Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PNAS Nexus ; 2(5): pgad127, 2023 May.
Article in English | MEDLINE | ID: covidwho-2320544

ABSTRACT

Modeling the global dynamics of emerging infectious diseases (EIDs) like COVID-19 can provide important guidance in the preparation and mitigation of pandemic threats. While age-structured transmission models are widely used to simulate the evolution of EIDs, most of these studies focus on the analysis of specific countries and fail to characterize the spatial spread of EIDs across the world. Here, we developed a global pandemic simulator that integrates age-structured disease transmission models across 3,157 cities and explored its usage under several scenarios. We found that without mitigations, EIDs like COVID-19 are highly likely to cause profound global impacts. For pandemics seeded in most cities, the impacts are equally severe by the end of the first year. The result highlights the urgent need for strengthening global infectious disease monitoring capacity to provide early warnings of future outbreaks. Additionally, we found that the global mitigation efforts could be easily hampered if developed countries or countries near the seed origin take no control. The result indicates that successful pandemic mitigations require collective efforts across countries. The role of developed countries is vitally important as their passive responses may significantly impact other countries.

2.
Proc Natl Acad Sci U S A ; 120(10): e2220080120, 2023 03 07.
Article in English | MEDLINE | ID: covidwho-2282534

ABSTRACT

Here, we combine international air travel passenger data with a standard epidemiological model of the initial 3 mo of the COVID-19 pandemic (January through March 2020; toward the end of which the entire world locked down). Using the information available during this initial phase of the pandemic, our model accurately describes the main features of the actual global development of the pandemic demonstrated by the high degree of coherence between the model and global data. The validated model allows for an exploration of alternative policy efficacies (reducing air travel and/or introducing different degrees of compulsory immigration quarantine upon arrival to a country) in delaying the global spread of SARS-CoV-2 and thus is suggestive of similar efficacy in anticipating the spread of future global disease outbreaks. We show that a lesson from the recent pandemic is that reducing air travel globally is more effective in reducing the global spread than adopting immigration quarantine. Reducing air travel out of a source country has the most important effect regarding the spreading of the disease to the rest of the world. Based upon our results, we propose a digital twin as a further developed tool to inform future pandemic decision-making to inform measures intended to control the spread of disease agents of potential future pandemics. We discuss the design criteria for such a digital twin model as well as the feasibility of obtaining access to the necessary online data on international air travel.


Subject(s)
Air Travel , COVID-19 , Humans , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Disease Outbreaks
3.
Nat Commun ; 14(1): 1569, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2285962

ABSTRACT

Ensuring a more equitable distribution of vaccines worldwide is an effective strategy to control global pandemics and support economic recovery. We analyze the socioeconomic effects - defined as health gains, lockdown-easing effect, and supply-chain rebuilding benefit - of a set of idealized COVID-19 vaccine distribution scenarios. We find that an equitable vaccine distribution across the world would increase global economic benefits by 11.7% ($950 billion per year), compared to a scenario focusing on vaccinating the entire population within vaccine-producing countries first and then distributing vaccines to non-vaccine-producing countries. With limited doses among low-income countries, prioritizing the elderly who are at high risk of dying, together with the key front-line workforce who are at high risk of exposure is projected to be economically beneficial (e.g., 0.9%~3.4% annual GDP in India). Our results reveal how equitable distributions would cascade more protection of vaccines to people and ways to improve vaccine equity and accessibility globally through international collaboration.


Subject(s)
COVID-19 , Vaccines , Humans , Aged , COVID-19 Vaccines , Global Health , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control
4.
One earth (Cambridge, Mass.) ; 4(4):553-564, 2021.
Article in English | EuropePMC | ID: covidwho-1801499

ABSTRACT

The rapid and extensive changes in household consumption patterns during the coronavirus disease 2019 (COVID-19) pandemic can serve as a natural experiment for exploring the environmental outcomes of changing human behavior. Here, we assess the carbon footprint of household consumption in Japan during the early stages of the COVID-19 pandemic (January–May 2020), which were characterized by moderate confinement measures. The associated lifestyle changes did not have a significant effect on the overall household carbon footprint compared with 2015–2019 levels. However, there were significant trade-offs between individual consumption categories such that the carbon footprint increased for some categories (e.g., eating at home) or declined (e.g., eating out, transportation, clothing, and entertainment) or remained relatively unchanged (e.g., housing) for others. Furthermore, carbon footprint patterns between age groups were largely consistent with 2015–2019 levels. However, changes in food-related carbon footprints were visible for all age groups since March and, in some cases, since February. Graphical Science for society Households are major sources of greenhouse gase (GHG) emissions both directly through energy use for transport, heating, and other activities and indirectly through emissions embedded in the goods and services they consume. Changes in lifestyles and consumption patterns can have major ramifications for GHG emissions. The COVID-19 pandemic catalyzed profound and rapid lifestyle shifts, which makes it a natural experiment for studying the outcomes of such changes for GHG emissions. Despite shifts in the work, socialization, and consumption practices of Japanese households during the early stages of the pandemic (January–May 2020), the overall changes in carbon footprints were negligible. Despite some trade-offs between consumption categories, the general carbon footprint patterns remained similar to 2015–2019 trends and are consistent among age groups. This has implications for decarbonization efforts in that the environmental benefits of changes in consumption patterns might not materialize automatically and be easily reversible. The COVID-19 pandemic caused significant changes in the lifestyles and household consumption patterns of Japanese households. However, these changes had negligible effects on household carbon footprints both on aggregate and in age-differentiated terms. Despite some trade-offs between consumption categories, carbon footprints reversed rapidly to the levels observed in previous years.

5.
One Earth ; 4(4): 553-564, 2021 Apr 23.
Article in English | MEDLINE | ID: covidwho-1185195

ABSTRACT

The rapid and extensive changes in household consumption patterns during the coronavirus disease 2019 (COVID-19) pandemic can serve as a natural experiment for exploring the environmental outcomes of changing human behavior. Here, we assess the carbon footprint of household consumption in Japan during the early stages of the COVID-19 pandemic (January-May 2020), which were characterized by moderate confinement measures. The associated lifestyle changes did not have a significant effect on the overall household carbon footprint compared with 2015-2019 levels. However, there were significant trade-offs between individual consumption categories such that the carbon footprint increased for some categories (e.g., eating at home) or declined (e.g., eating out, transportation, clothing, and entertainment) or remained relatively unchanged (e.g., housing) for others. Furthermore, carbon footprint patterns between age groups were largely consistent with 2015-2019 levels. However, changes in food-related carbon footprints were visible for all age groups since March and, in some cases, since February.

6.
Int J Environ Res Public Health ; 18(6)2021 03 10.
Article in English | MEDLINE | ID: covidwho-1125260

ABSTRACT

Mobility restrictions have been a heated topic during the global pandemic of coronavirus disease 2019 (COVID-19). However, multiple recent findings have verified its importance in blocking virus spread. Evidence on the association between mobility, cases imported from abroad and local medical resource supplies is limited. To reveal the association, this study quantified the importance of inter- and intra-country mobility in containing virus spread and avoiding hospitalizations during early stages of COVID-19 outbreaks in India, Japan, and China. We calculated the time-varying reproductive number (Rt) and duration from illness onset to diagnosis confirmation (Doc), to represent conditions of virus spread and hospital bed shortages, respectively. Results showed that inter-country mobility fluctuation could explain 80%, 35%, and 12% of the variance in imported cases and could prevent 20 million, 5 million, and 40 million imported cases in India, Japan and China, respectively. The critical time for screening and monitoring of imported cases is 2 weeks at minimum and 4 weeks at maximum, according to the time when the Pearson's Rs between Rt and imported cases reaches a peak (>0.8). We also found that if local transmission is initiated, a 1% increase in intra-country mobility would result in 1430 (±501), 109 (±181), and 10 (±1) additional bed shortages, as estimated using the Doc in India, Japan, and China, respectively. Our findings provide vital reference for governments to tailor their pre-vaccination policies regarding mobility, especially during future epidemic waves of COVID-19 or similar severe epidemic outbreaks.


Subject(s)
COVID-19 , China/epidemiology , Disease Outbreaks , Humans , India/epidemiology , Japan/epidemiology , SARS-CoV-2
7.
Nat Hum Behav ; 5(3): 308-309, 2021 03.
Article in English | MEDLINE | ID: covidwho-1104496

Subject(s)
COVID-19 , Pandemics , Humans , SARS-CoV-2
9.
Sci Adv ; 6(49)2020 12.
Article in English | MEDLINE | ID: covidwho-983587

ABSTRACT

Changes in CO2 emissions during the COVID-19 pandemic have been estimated from indicators on activities like transportation and electricity generation. Here, we instead use satellite observations together with bottom-up information to track the daily dynamics of CO2 emissions during the pandemic. Unlike activity data, our observation-based analysis deploys independent measurement of pollutant concentrations in the atmosphere to correct misrepresentation in the bottom-up data and can provide more detailed insights into spatially explicit changes. Specifically, we use TROPOMI observations of NO2 to deduce 10-day moving averages of NO x and CO2 emissions over China, differentiating emissions by sector and province. Between January and April 2020, China's CO2 emissions fell by 11.5% compared to the same period in 2019, but emissions have since rebounded to pre-pandemic levels before the coronavirus outbreak at the beginning of January 2020 owing to the fast economic recovery in provinces where industrial activity is concentrated.


Subject(s)
COVID-19/epidemiology , Carbon Dioxide/analysis , Pandemics , Satellite Communications , China/epidemiology , Geography , Nitrates/analysis , SARS-CoV-2/physiology
10.
Nat Commun ; 11(1): 5172, 2020 10 14.
Article in English | MEDLINE | ID: covidwho-963670

ABSTRACT

The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (-1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic's effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.


Subject(s)
Air Pollutants/analysis , Carbon Dioxide/analysis , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Air Pollutants/economics , Betacoronavirus , COVID-19 , Carbon Dioxide/economics , Coronavirus Infections/economics , Coronavirus Infections/prevention & control , Environmental Monitoring , Fossil Fuels/analysis , Fossil Fuels/economics , Humans , Industry/economics , Nitrogen Dioxide/analysis , Nitrogen Dioxide/economics , Pandemics/economics , Pandemics/prevention & control , Pneumonia, Viral/economics , Pneumonia, Viral/prevention & control , SARS-CoV-2
11.
Proc Natl Acad Sci U S A ; 117(42): 26151-26157, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-807983

ABSTRACT

Emerging evidence suggests a resurgence of COVID-19 in the coming years. It is thus critical to optimize emergency response planning from a broad, integrated perspective. We developed a mathematical model incorporating climate-driven variation in community transmissions and movement-modulated spatial diffusions of COVID-19 into various intervention scenarios. We find that an intensive 8-wk intervention targeting the reduction of local transmissibility and international travel is efficient and effective. Practically, we suggest a tiered implementation of this strategy where interventions are first implemented at locations in what we call the Global Intervention Hub, followed by timely interventions in secondary high-risk locations. We argue that thinking globally, categorizing locations in a hub-and-spoke intervention network, and acting locally, applying interventions at high-risk areas, is a functional strategy to avert the tremendous burden that would otherwise be placed on public health and society.


Subject(s)
Communicable Disease Control/methods , Communicable Diseases, Emerging/prevention & control , Coronavirus Infections/prevention & control , Disease Transmission, Infectious/prevention & control , Global Health/trends , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , Climate , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/transmission , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Forecasting , Humans , International Cooperation , Models, Theoretical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2 , Travel
12.
Nat Hum Behav ; 4(6): 577-587, 2020 06.
Article in English | MEDLINE | ID: covidwho-563084

ABSTRACT

Countries have sought to stop the spread of coronavirus disease 2019 (COVID-19) by severely restricting travel and in-person commercial activities. Here, we analyse the supply-chain effects of a set of idealized lockdown scenarios, using the latest global trade modelling framework. We find that supply-chain losses that are related to initial COVID-19 lockdowns are largely dependent on the number of countries imposing restrictions and that losses are more sensitive to the duration of a lockdown than its strictness. However, a longer containment that can eradicate the disease imposes a smaller loss than shorter ones. Earlier, stricter and shorter lockdowns can minimize overall losses. A 'go-slow' approach to lifting restrictions may reduce overall damages if it avoids the need for further lockdowns. Regardless of the strategy, the complexity of global supply chains will magnify losses beyond the direct effects of COVID-19. Thus, pandemic control is a public good that requires collective efforts and support to lower-capacity countries.


Subject(s)
Communicable Disease Control , Coronavirus Infections , Health Policy , Industry , Models, Econometric , Pandemics , Pneumonia, Viral , COVID-19 , Communicable Disease Control/economics , Coronavirus Infections/economics , Coronavirus Infections/prevention & control , Health Policy/economics , Humans , Industry/economics , Pandemics/economics , Pandemics/prevention & control , Pneumonia, Viral/economics , Pneumonia, Viral/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL